
The CLUE system represents an unprecedented effort to leverage several academic and 

government research institutions to help guide NOAA’s operational environmental modeling 

efforts at the convection-allowing scale.
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T he National Severe Storms Laboratory (NSSL)  
 and Storm Prediction Center (SPC) coorganize  
 annual Spring Forecasting Experiments (SFEs), 

which are conducted in NOAA’s Hazardous Weather 
Testbed (HWT) at the National Weather Center 
in Norman, Oklahoma, for five weeks during the 
climatological peak of the severe weather season. 
The SFEs are designed to test emerging concepts 
and technologies for improving the prediction of 
hazardous convective weather with the primary 
goals of accelerating the transfer of promising 
new tools and concepts from research to opera-
tions, inspiring new initiatives for operationally 
relevant research, and identifying and document-
ing sensitivities and performance characteristics of 
state-of-the-art experimental convection-allowing 

modeling (CAM) systems. Over the last decade, 
the SFEs have emerged as an international resource 
for developing and evaluating the performance of 
new CAM systems, and major advances have been 
made in creating, importing, processing, verifying, 
and extracting unique hazardous weather fields 
while providing analysis and visualization tools 
including probabilistic information, for these large 
and complex datasets. For example, during the 2010 
experiment (Clark et al. 2012), in addition to provid-
ing a 26-member, 4-km grid-spacing CAM-based 
ensemble, the Center for Analysis and Prediction 
of Storms (CAPS) at the University of Oklahoma 
provided a 1-km contiguous U.S. (CONUS) domain 
forecast that required over 10,000 computing cores. 
In the 2015 SFE (Gallo et al. 2017), six unique and 
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independently designed CAM-based ensembles 
were contributed by CAPS, the National Center for 
Atmospheric Research (NCAR), NSSL, SPC, and the 
Air Force Weather Agency (AFWA; now called the 
557th Weather Wing). Figure 1 provides a summary 
of CAMs examined since 2007, along with a timeline 
of CAM guidance milestones.

Through the SFEs, much has been learned about 
how to utilize and configure CAMs and CAM en-
sembles, and since 2007 the number of CAM systems 
(including ensembles) examined in the HWT has 
increased dramatically. Meanwhile, new technolo-
gies and physical understanding have been migrated 
to the SPC, enhancing the timeliness and accuracy 
of their severe weather forecasts. Despite these ad-
vances, progress toward identifying optimal CAM 
ensemble configurations has been inhibited because 
HWT collaborators have independently designed 
contributed CAM systems, which makes it difficult to 
attribute differences in performance characteristics. 
For example, during the 2015 SFE, CAPS and NSSL 
contributed mixed- and single-physics ensembles, 
respectively, but because of other differences in the 
configurations (e.g., initial condition perturbations, 
data assimilation, grid spacing, domain size, and 
model version), the impacts of single versus mixed-
physics configurations could not be isolated. Thus, 
after the 2015 SFE it was clear to SFE leaders that more 
controlled experiments were needed. Furthermore, 
around the same time period, the international 
University Corporation for Atmospheric Research 
Community Advisory Committee for the National 
Centers for Environmental Prediction (UCACN) 
Model Advisory Committee, which is charged with 
developing recommendations for a unified NOAA 
modeling strategy to advance the United States to 
world leadership in numerical modeling, released a 

comprehensive set of recommendations1 that included 
the following: 1) the NOAA environmental modeling 
community requires a rational, evidence-driven ap-
proach toward decision-making and modeling system 
development; 2) a unified collaborative strategy for 
model development across NOAA is needed; and 
3) NOAA needs to better leverage the capabilities of 
the external community. Thus, in the spirit of these 
recommendations, organizers of the HWT SFEs made 
a major push to coordinate efforts among its large 
group of collaborators in 2016. Specifically, instead 
of each group providing a separate, independently 
designed CAM-based ensemble, all groups agreed 
on a set of model specifications so that the simula-
tions contributed by each group could be viewed as 
one large, carefully designed “superensemble.” This 
design facilitated a number of controlled experi-
ments geared toward finding optimal configuration 
strategies for CAM ensembles and has been termed 
the Community Leveraged Unif ied Ensemble 
(CLUE, hereafter). The superensemble concept has 
been used in previous works for tropical cyclone, 
weather, climate, and seasonal prediction systems 
(e.g., Krishnamurti et al. 1999; Palmer et al. 2004; 
Krishnamurti et al. 2016 and references therein), 
but has yet to be applied within a CAM ensemble 
framework. However, the philosophy behind the 
CLUE design is different from these previous works 
on superensembles. Specifically, the CLUE has a more 
coordinated design with goals that are more focused 
on identifying impacts of different ensemble design 
strategies, rather than generating a single “best” fore-
cast from independent ensemble datasets.

1 The full report is available at www.ncep.noaa.gov/director 
/ucar_reports/ucacn_20151207/UMAC_Final_Report 
_20151207-v14.pdf.
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The CLUE system represents an unprecedented 
effort to leverage several academic and govern-
ment research institutions to help guide NOAA’s 
operational environmental modeling efforts. In 
future SFEs, the CLUE will be reconfigured based 
on results from previous years, advances in technol-
ogy, and feedback from the operational and research 
communities. Furthermore, the CLUE framework 

will help test initial convection-allowing versions 
of the Finite Volume Cubed Sphere Model (FV3; 
Putman and Lin 2007) developed at NOAA’s Geo-
physical Fluid Dynamics Laboratory. The FV3 has 
been selected as the dynamic core to replace the 
Global Forecast System (GFS) model as part of the 
Next Generation Global Prediction System (NGGPS; 
www.weather.gov/sti/stimodeling_nggps) program 

Fig. 1. (a) Stacked bar graph indicating the number of unique CAMs used each year since 2007 in the HWT SFEs. 
The different colors denote the number of models contributed by the different agencies. A legend is provided at 
the top left. Abbreviations are defined as follows: CLUE, Community Leveraged Unified Ensemble; SPC, Storm 
Prediction Center; NCAR, National Center for Atmospheric Research; UKMET, Met Office; NASA SPORT, 
National Aeronautics and Space Administration Short-term Prediction Research and Transition Center; AFWA, 
Air Force Weather Agency; GSD, Global Systems Division of NOAA’s Earth System Research Laboratory; 
EMC, NOAA’s Environmental Modeling Center; NSSL, National Severe Storms Laboratory; and CAPS, Center 
for Analysis and Prediction of Storms. (b) Timeline of CAM guidance milestones at the HWT since 2007.
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and FV3 is envisioned as the eventual foundation for 
NOAA’s regional models and ensemble systems. This 
will require much research, development, and testing 
to ensure that FV3 performs equal to or better than 
existing regional short-term forecasting systems.

This article describes the design of the 2016 
CLUE system and the eight specific experiments 
that were conducted within the CLUE framework. 
Additionally, as an example of the research enabled 
by the CLUE framework, results are presented from 
one of the experiments that examined the impact of 
using single versus multicore CAM ensemble con-
figurations.

CLUE CONFIGURATION. The idea for the 
CLUE system was formulated in fall of 2015. At this 
time, plans were already in place for several groups 
of collaborators to contribute model data to the 2016 
SFE through NOAA-funded research-to-operations 
projects. For example, NCAR and CAPS had proj-
ects funded by NOAA’s Oceanic and Atmospheric 
Research (OAR) Office of Water and Air Quality 
(OWAQ), and the University of North Dakota (UND) 
had a project funded by the National Weather Service 
Research to Operations Initiative. While the model 
runs NSSL contributed to the CLUE were not sup-
ported by a specific grant, the Texas Advanced Com-
puting Center (TACC) provided generous computing 
resources for their contribution. Since participation in 
the CLUE would require work beyond that outlined 
in their already-existing projects, leaders from each 
group of collaborators were approached individually 
to gauge whether they had the resources and will-
ingness to participate. Fortunately, because of the 
mutually beneficial research that the CLUE system 
would enable, along with the potential to provide 
evidence to help optimize NOAA’s first operational 
CAM-ensemble configuration, all collaborators were 
eager and willing to participate.

The CLUE configuration was formulated by con-
sidering some basic research questions, such as how to 
optimize CAM-ensemble configurations and how to 
build around each collaborator’s already existing plans 
for model data contributions. Ultimately, the CLUE 
was designed to have 66 members: 35 contributed by 
CAPS, 15 by NSSL, 10 by NCAR, 5 by the UND, and 
1 from the Earth System Research Laboratory/Global 
Systems Division (ESRL/GSD). The runs were conduct-
ed on several different high-performance computing 
systems. CAPS used TACC’s Stampede system and the 
University of Tennessee’s National Institute for Com-
putation Science’s (NICS) Darter system, NSSL used 
TACC’s Lonestar5 system, NCAR used the Yellowstone 

supercomputer, UND used TACC’s Stampede system, 
and ESRL/GSD used NOAA’s Jet system.

All members were initialized at 0000 UTC on 
weekdays with forecasts to 36 h using 3-km grid spac-
ing over a CONUS domain. Members included the 
Advanced Research version of the Weather Research 
and Forecasting (WRF-ARW) Model (Skamarock 
et al. 2008), as well as the Nonhydrostatic Multiscale 
Model on the B grid (NMMB; Janjić and Gall 2012). 
The CAPS, UND, and NSSL members all shared a set 
of common model versions, domain specifications 
(including vertical levels), physics parameterizations, 
and postprocessing methods. The ESRL/GSD member 
was a developmental version of the High Resolution 
Rapid Refresh (HRRR) model (Benjamin et al. 2016) 
run to 36 h, which had a slightly different domain than 
the other members. The NCAR members also had a 
slightly different domain and used a 1-yr-older version 
of WRF, which was necessary because their members 
were from an already established ensemble system 
whose configuration was based on extensive testing 
and verification (Schwartz et al. 2015a). The NCAR 
group did not want to risk introducing changes to their 
system by adhering exactly to the CLUE specifications, 
since it could introduce unwanted systematic biases. 
Despite some minor differences in the NCAR and 
ESRL/GSD members, postprocessing was standardized 
across all ensemble subsets (described later).

The basic strategy in designing the CLUE was to 
formulate several subsets of up to 20 members that 
could be used to test specific configuration strategies 
in controlled experiments. Ten unique subsets were 
formulated, with CAPS contributing five subsets, NSSL 
two, and ESRL/GSD, NCAR, and UND each contribut-
ing one. Some experiments utilized combinations of 
these subsets. These subsets are described as follows:

1) core (CAPS)—Nine WRF-ARW members were 
designed to account for as many error sources 
as possible. The control member used initial 
conditions (ICs) and lateral boundary conditions 
(LBCs; 3-h updates) from 12-km grid-spacing 
North American Mesoscale Forecast System 
(NAM) analyses and forecasts, respectively. 
Radar ref lectivity and velocity data and other 
traditional data, including surface observations 
and rawinsondes, were assimilated into the ICs 
using the Advanced Regional Prediction System 
(ARPS) three-dimensional variational data as-
similation (3DVAR; Xue et al. 2003; Gao et al. 
2004) and cloud analysis (Xue et al. 2003; Hu et al. 
2006) system. The other core subset members 
also used ARPS-3DVAR, but IC perturbations 
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were derived from evolved (through 3 h) pertur-
bations of 2100 UTC initialized members of the 
National Centers for Environmental Prediction 
(NCEP) Short-Range Ensemble Forecast (SREF) 
system (Du et al. 2006) and added to the control 
member ICs, with corresponding SREF forecasts 
used for LBCs. Mixed physics were implemented 
in the core subset using various combinations 
of microphysics and planetary boundary layer 
(PBL)/turbulence schemes.

2) s-phys-rad (CAPS)—Ten WRF-ARW members 
(including the control member of core) were 
configured the same as core but used a single set 
of physics.

3) caps-enkf (CAPS)—Ten WRF-ARW members 
used the same set of physics and LBCs as core, 
but with ICs that were derived from an ensemble 
Kalman filter (EnKF) system.

4) caps-nmmb-rad (CAPS)—A single NMMB run 
used the same ICs/LBCs as the core control mem-
ber.

5) caps-nmmb (CAPS)—Five NMMB members 
had the same ICs/LBCs as five of the s-phys-rad 
members but did not use ARPS-3DVAR (i.e., a 
“cold start” was used).

6) s-phys-norad (NSSL)—Ten WRF members were 
the same as s-phys-rad, but without ARPS-
3DVAR (i.e., cold start).

7) nssl-nmmb (NSSL)—Five NMMB members were 
configured the same as the caps-nmmb members, 

except they shared a different set of the s-phys-rad 
ICs/LBCs.

8) HRRR36 (ESRL/GSD)—A development version 
of the HRRR was configured to provide 36-h 
forecasts. The HRRR is a 3-km grid-spacing, 
ARW-based model that is initialized hourly and 
provides 18-h forecasts.

9) ncar-enkf (NCAR)—Ten WRF members used sin-
gle physics and ICs/LBCs derived from NCAR’s 
Data Assimilation Research Testbed (DART; 
Anderson et al. 2009) software (Schwartz et al. 
2015a).

10) mp (UND)—Five WRF members had the same 
ICs/LBCs as the core control member, but with 
different microphysics parameterizations in each 
member.

Table 1 provides a summary of the specifications 
for each CLUE subset, and further details including 
specifications for every member can be found in the 
online supplement (https://doi.org/10.1175/BAMS 
-D-16-0309.2).

CLUE EXPERIMENTS. The design of CLUE 
allowed for eight unique experiments, which are 
described as follows:

1) ARW versus NMMB—A direct comparison of 
the subjective and objective skill of ARW and 
NMMB dynamic cores was conducted. These 

Table 1. Summary of CLUE subsets. IC/LBC perturbations labeled SREF indicate that IC perturbations 
were extracted from members of NCEP’s SREF system and added to 0000 UTC NAM analyses. In subsets 
with “yes” indicated for mixed physics, the microphysics and turbulence parameterizations were varied, 
except for subset mp, which only varied the microphysics. Note that the control member of the core en-
semble was also used as the control member in the mp and s-phys-rad ensembles. Thus, although the total 
number of members adds to 67, there were 66 unique members. Further, one member planned for the 
core subset was not ready for real-time implementation; thus, only nine core members were actually run. 
The HPC column provides the names of the high-performance computers used for each set of simulations. 
The agencies that maintain each system are given in the text.

CLUE subset
No. of 

members
IC/LBC 

perturbations
Mixed 

physics?
Data 

assimilation
Model 
core Agency HPC

core 10 (9) SREF Yes ARPS-3DVAR ARW CAPS Stampede

s-phys-rad 10 SREF No ARPS-3DVAR ARW CAPS Stampede

caps-enkf 10 EnKF (CAPS) Yes EnKF (CAPS) ARW CAPS Darter

caps-nmmb-rad 1 None No ARPS-3DVAR NMMB CAPS Stampede

caps-nmmb 5 SREF No Cold start NMMB CAPS Stampede

s-phys-norad 10 SREF No Cold start ARW NSSL Lonestar5

nssl-nmmb 5 SREF No Cold start NMMB NSSL Lonestar5

HRRR36 1 None No RAP-GSI/DFI ARW ESRL/GSD Jet

ncar-enkf 10 EnKF (DART) No EnKF (DART) ARW NCAR Yellowstone

mp 5 None Yes ARPS-3DVAR ARW UND Stampede
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direct comparisons were possible because 10 
pairs of NMMB and ARW members within the 
caps-nmmb and nssl-nmmb, and s-phys-norad, 
subsets had different model cores but shared 
the same ICs/LBCs. The optimal dynamic core 
for CAM applications is still an open question. 
NMMB is known to be more computationally ef-
ficient than ARW, but ARW has been preferred by 
severe weather forecasters and the severe weather 
research community because of its more realistic 
depiction of storm structure and evolution.

2) Multicore versus single-core ensemble design—
Three ensembles were compared to test the 
effec tiveness of single-core versus multicore 
configurations. The first ensemble used five ARW 
and five NMMB members from the s-phys-norad 
and nssl-nmmb subsets, respectively; the second 
used the 10 ARW members from the s-phys-norad 
subset; and the third used 10 NMMB members 
from the caps-nmmb and nssl-nmmb subsets. 
The effectiveness of multicore (or multimodel) 
ensemble configuration strategies has been dem-
onstrated for seasonal [e.g., the North American 
Multimodel Ensemble (NMME); Kirtman et al. 
(2014)], medium-range [e.g., the North American 
Ensemble Forecast System (NAEFS); Candille 
(2009)], and short-range (e.g., the SREF; Du 
et al. 2006) forecasting applications. The use of 
multiple models with different but equally valid 
methods for initialization and integration helps 
to better sample the range of future states than 
a single modeling system. Although the Storm 
Scale Ensemble of Opportunity (SSEO; Jirak et al. 
2012) has been shown to be a skillful multimodel 
CAM ensemble, the multimodel strategy has not 
been tested for CAM applications in controlled 
experiments. Furthermore, given the push toward 
model core unification that will better focus 
model development efforts (e.g., UCAR 2015), it is 
preferred that a future operational CAM ensemble 
will be single core. Thus, it is important to quan-
tify how much skill (if any) is sacrificed from a 
single-core configuration within the context of a 
controlled experiment.

3) Single physics versus multiphysics—Two ensembles 
with the same set of perturbed ICs/LBCs were com-
pared to test the impact of single versus multiphys-
ics. One ensemble, core, used varied turbulence 
and microphysics schemes, while another, s-phys-
rad, used a common set of physics. Although past 
SFEs have quantified the error growth from varied 
physics within a perfect analysis framework (i.e., 
nonperturbed ICs/LBCs; e.g., Clark et al. 2010b), 

there has not been an experiment designed in 
the SFE to examine the impact of varied physics 
with perturbed ICs/LBCs in a CAM ensemble. 
Furthermore, while multiple physics schemes have 
been shown to increase spread, leading to improved 
forecast skill (e.g., Stensrud et al. 2000; Hacker et al. 
2011; Berner et al. 2011, 2015), there are theoretical 
and practical disadvantages to multiphysics ap-
proaches, including the resource-intensive need to 
develop and maintain multiple parameterizations, 
as well as the introduction of systematic biases (e.g., 
Jankov et al. 2017). Thus, it is important to quantify 
the gain in skill (if any) from using multiphys-
ics. Future SFEs will explore whether stochastic 
physics perturbations (e.g., Jankov et al. 2017 and 
references therein) in a single-physics ensemble 
can match or exceed the spread and skill from the 
multiphysics approach.

4) Comparison of ensembles with and without radar 
data assimilation—Two single-physics ensembles 
with perturbed ICs/LBCs were identically config-
ured, except one, s-phys-rad, used ARPS-3DVAR 
to assimilate radar data and other observations in 
all members, while another, s-phys-norad, used a 
cold start in all members. Previous studies have 
documented the impact of radar data assimila-
tion by comparing deterministic models with 
and without radar data assimilation (e.g., Kain 
et al. 2010; Stratman et al. 2013), finding that the 
positive impact of the assimilation is strongest 
within the first 3–6 h of the forecast but can last 
up to 12 h. However, these comparisons have not 
been conducted within an ensemble framework 
to determine the time length and magnitude of 
the positive impact of radar assimilation.

5) 3DVAR versus EnKF data assimilation strate-
gies—The core, caps-enkf, and ncar-enkf subsets 
were compared. Although it is much more compu-
tationally expensive than 3DVAR, the EnKF data 
assimilation method is advantageous because it 
provides flow-dependent background error covari-
ances that result in higher correlations between the 
model state and observed variables (e.g., Johnson 
et al. 2015). Despite the theoretical advantages to 
EnKF, subjective and objective comparisons of 
CAM ensembles from past SFEs did not find that 
those using EnKF performed any better than other 
data assimilation methods (Jirak et al. 2015). Thus, 
more work is needed to optimize EnKF for CAM 
ensemble applications. However, this experiment 
was not as controlled as the others, because aspects 
of the subset of configurations other than the data 
assimilation methods also differed.
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6) GSD radar versus CAPS radar assimilation—Two 
methods for assimilating radar data were com-
pared. One used ARPS-3DVAR and the other used 
the Digital Diabatic Filter Initialization (DDFI; 
Benjamin et al. 2016) system used in the HRRR. It 
was planned to include a core member configured 
the same as HRRR36, but using the ARPS-3DVAR 
system to generate the ICs. Because of time con-
straints, the core member planned for this ex-
periment was not ready for implementation in real 
time. Thus, this experiment was not conducted.

7) Microphysics sensitivities—Using the five mem-
bers of the mp subset, the impact of different 
microphysics parameterizations on forecast storm 
structure and evolution was examined. This 
exper iment has been conducted in SFEs since 
2010 (e.g., Clark et al. 2012, 2014), and through the 
participation of microphysics scheme developers 
each year, parameterizations have been improved 
and valuable interactions have occurred with 
forecasters and modelers.

8) Ensemble size experiment—A comparison of en-
sembles with equal contributions of NMMB and 
ARW members using 2, 4, 6, 10, and 20 members 
was conducted to examine the impact of en-
semble size. The ensembles used combinations of 
members from the caps-nmmb, nssl-nmmb, and 
s-phys-norad subsets. While very large ensembles 
(e.g., hundreds of members) would be ideal if 
computational expense were not an issue, the “op-
timal” ensemble size is generally considered one in 
which only relatively small gains are achieved by 
adding additional members. Using a 50-member 
CAM-ensemble, Schwartz et al. (2014) found that 
only small gains in precipitation forecast skill are 
attained after about 20 members and argue that 
in an operational setting with limited computa-
tional resources, sizes greater than 10 would be 
difficult to justify. Clark et al. (2011) also found 
that a CAM ensemble of around 10 members has 
similar quantitative precipitation forecast (QPF) 
skill to larger ensembles and point out that the 
optimal number of members varies as a function 
of forecast length and spatial scale.

CLUE POSTPROCESSING. In past SFEs, the 
members from each of the unique CAM ensembles 
contributed to the HWT were postprocessed2 by each 

collaborator using their own software. Furthermore, 
some collaborators, such as CAPS, provided separate 
sets of postprocessed files containing ensemble-
derived fields (e.g., probabilities, ensemble maximum, 
and ensemble mean). Thus, ingesting the datasets into 
the HWT workstations required different procedures 
to account for different file formats, fields, and grids. 
Furthermore, combining ensemble members from 
different contributors was cumbersome and rarely 
done, since it required an extra regridding step be-
fore computing any ensemble-derived field. Thus, 
standardizing the postprocessing procedure was one 
of the most important aspects of the CLUE since it 
streamlined the workflow and allowed for consistent 
postprocessed fields, visualization, and verification.

To standardize the postprocessing, NSSL worked 
closely with scientists at the Developmental Testbed 
Center (DTC) and NCEP’s Environmental Modeling 
Center (EMC) to modify the most recent version of 
the Unified Post-Processor (UPP) software, which 
is maintained by the DTC (information on the most 
recent version is available at www.dtcenter.org/upp 
/users/index.php). The UPP was modified to output 
a set of 107 fields from each CLUE member in grid-
ded binary (grib2) format over a 3-km grid-spacing 
CONUS domain. The fields match the two-dimen-
sional fields output by the operational HRRR and were 
chosen because of their relevance to a broad range of 
forecasting needs, including aviation, severe weather, 
and precipitation. Additional output fields, which 
were requested by NCEP’s Weather Prediction Center 
(WPC), SPC, and Aviation Weather Center (AWC), 
were also included. This special version of the UPP 
was distributed by NSSL to collaborators in February 
2016 to allow time for testing and implementation. All 
contributors were asked to supply all 107 fields but were 
also allowed to add additional diagnostics based on 
their own research interests. The online supplement 
contains a table listing all postprocessed fields.

CLUE RESULTS. Given the sheer volume of data 
composing the CLUE, it is impossible to present results 
in this article from each of the experiments. Addition-
ally, active research is still being conducted to examine 
several of the CLUE datasets. For example, DTC Visitor 
Program projects (www.dtcenter.org/visitors/) are 
currently under way, examining the value of radar data 
assimilation using object-based verification methods, 
as well as the impact of mixed physics in the CLUE. 
Preliminary findings and results from the 2016 SFE, in-
cluding some preliminary CLUE results, can be found 
in Clark et al. (2016). It is important to recognize that 
annual HWT assessment activities typically include 

2 Postprocessing refers to the procedure used to convert raw 
model output to standard grids and pressure levels, as well 
as to compute diagnostic quantities (e.g., convective available 
potential energy and storm relative helicity).
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a combination of subjective and objective evaluation 
methods (Kain et al. 2003), which together provide a 
more complete picture of the potential utility of new 
forecast techniques in an operational environment. 
However, given the space limitations, this section will 
focus on results from the single versus multicore CLUE 
experiments as an example of the research enabled 
within the CLUE framework.

Single versus multicore experiment: Severe weather 
verif ication. Objective verification of four ensemble 
subsets was conducted for severe weather occurrence, 
which included 1) NMMB, a 10-member, single-
physics NMMB ensemble with perturbed ICs/LBCs; 
2) ARW, a 10-member, single-physics ARW ensemble 
with the same perturbed ICs/LBC as NMMB; 3) 
MIX10-mem, a combination of five of the NMMB and 
ARW members; and 4) MIX20-mem, a combination of 
all 10 NMMB and ARW members. Complete datasets 
from these ensembles were analyzed for each day 
the SFE operated (24 days; 2 May–3 June, excluding 
weekends/holidays).

To verify severe weather (defined as a tornado, dam-
aging winds, or large hail), ensemble-derived severe 

weather probabilities were computed by considering 
extreme values of hourly maximum updraft helicity 
(UH; e.g., Kain et al. 2010) as severe storm proxies 
following the “surrogate severe” approach outlined by 
Sobash et al. (2011, 2016b). This approach has been in-
creasingly utilized for verifying CAM-based forecasts 
of severe weather (e.g., Schwartz et al. 2015a,b; Sobash 
et al. 2016a; Gallo et al. 2016; Loken et al. 2017; Dawson 
et al. 2017). The basic idea behind the surrogate severe 
approach is that “extremes” in simulated storm diag-
nostics are strongly correlated with observed severe 
weather. However, given the inherent uncertainty 
associated with convection forecasts at 12–36-h lead 
times, coarsened grids and spatial smoothing must 
be applied to account for timing and displacement 
errors. Furthermore, the skill and reliability of sur-
rogate severe forecasts are heavily dependent on the 
threshold or percentile chosen to represent extremes, 
as well as the amount of smoothing applied. Thus, in 
the methods described below, a range of UH thresholds 
and smoothing levels are chosen, which are known 
to produce reliable forecasts based on previous work.

For application of the surrogate severe approach, 
the maximum UH at each grid point was computed 

Fig. 2. SSPFs (shaded) using σ = 80 km and p = 0.99 for ensemble forecasts initialized at 0000 UTC 9 May 2016 and 
valid over forecast hours 13–36 for the ensemble subsets (a) ARW, (b) NMMB, (c) MIX10-mem, and (d) MIX20-mem. 
(e)–(h) As in (a)–(d), respectively, but for 10 May 2016. Locations of storm reports are overlaid with a legend 
indicating the type of report at the bottom left. The thick black contour indicates the area within 40 km of any 
storm report.
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over the 24-h period 1200–1200 UTC (forecast hours 
13–36) for each ensemble member. Then, for each 
member, these maximum UH values were remapped 
onto the 81-km NCEP 211 grid by assigning each 
81-km grid box the maximum value of UH out of 
all 3-km grid points within the 81-km boxes. This 
methodology is consistent with the SPC operational 
day 1 convective outlook, which provides categorical 
and probabilistic forecasts for the 1200–1200 UTC 
time period and represents severe weather threats 
within 25 mi (~40 km) of a point. Next, severe weather 
probabilities [hereafter, surrogate severe probabilistic 
forecasts (SSPFs)] were computed by finding the ratio 
of members with UH greater than or equal to a speci-
fied percentile p and then applying a two-dimensional 
Gaussian filter to these ratios. The UH percentiles 
were computed separately for the set of members 
in each ensemble subset with the same model core 
using the distribution of UH values from the 81-km 
grids over all 24 cases. The percentiles, rather than 
thresholds, were used to avoid giving more weight 
to ensemble members with climatologically higher 
values of UH in the computation of SSPFs. In this 
dataset, the NMMB tended to have slightly higher UH 
than ARW (e.g., at p = 0.99, the UH values in NMMB 
and ARW were 152 and 141 m2 s–2, respectively).

The percentiles from 0.80 to 0.998 in increments 
of 0.02 (100 unique percentiles) were examined, and 
for each percentile, a range of standard deviations σ in 
the Gaussian filter from 40 to 300 km in increments of 
5 km were tested (i.e., 53 unique σ values). Physically, 
1σ can be thought of as the radius containing 68% of 
the Gaussian kernel weights. Thus, for each case and 
ensemble subset, there were 100 × 53 = 5,300 sets of 
SSPFs. Examples of these SSPFs using σ = 80 km and 
p = 0.99 for 9 and 10 May 2016 along with the verify-
ing storm reports are shown in Fig. 2. To verify the 
SSPFs, preliminary observed storm reports from SPC 
(accessible at www.spc.noaa.gov/climo/reports/) were 
mapped onto the same 81-km grid as the SSPFs. Any 
grid box with one of more reports over the 1200–1200 
UTC time period was assigned 1 while boxes with 
zero reports were assigned 0. Verification metrics 
were computed over the masked area displayed in 
Fig. 3, which was chosen to limit verification to land 
and near-coastal areas, as well as to eliminate the 
Intermountain West, where storm reports and pre-
cipitation estimates are not as reliable.

Three metrics are used for objective verification. 
1) Area under the relative operating characteristic 
curve (AUC; Mason 1982) is computed by plot-
ting the probability of detection (POD) versus the 

Fig. 3. Area over which verification metrics were computed.
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probability of false detection (POFD) for a range of 
probabilistic thresholds (herein, 2% and 5%–95% in 
increments of 5% are used). The area under the curve 
connecting each POD–POFD pair is computed us-
ing a trapezoidal approximation (e.g., Wandishin 
et al. 2001). The AUC measures the ability of the 
forecast system to discriminate between events and 
nonevents. A value of 1.0 is considered a perfect 
AUC, while 0.5 and below is considered to have no 
skill. 2) Fractions skill score (FSS; Roberts and Lean 
2008) is calculated by computing the mean-square 
error (MSE) of the SSPFs relative to “practically per-
fect” observations (e.g., Hitchens et al. 2013), which 
are constructed by applying a Gaussian filter with 
σ = 120 km to the 81-km grid of storm reports. The 
MSEs of the SSPFs are normalized by a worst-case 
reference forecast and subtracted from 1.0 to get 
the FSS [see Eqs. (3)–(5) in Sobash et al. (2011)]. The 
FSS ranges from 0 (no skill) to 1 (perfect forecast). 
3) The reliability component of the Brier score (BSrely; 
Brier 1950; Murphy 1973) is computed by taking the 
squared difference of the probabilities within speci-
fied bins and their corresponding observed frequen-
cies [see Eq. (2) in Atger (2003)]. The BSrely essentially 
measures how closely the points within a reliability 
diagram follow the perfect reliability line, where the 
squared error for each point is weighted according 
to the number of forecasts within each probability 
bin. Lower BSrely indicates increasing reliability, 
with BSrely = 0 indicating perfect reliability. These 
three metrics were chosen because they are very well 
known and provide complementary information 
on discriminating ability (AUC), forecast accuracy 
(FSS), and reliability (BSrely).

Each skill metric for each ensemble is presented 
as a function of σ and the UH percentile in Fig. 4. 
The metrics behave quite differently in terms of 
where the best scores fall within the σ–UH per-
centile phase space. AUC has the highest scores 
at relatively low σ values (60–100 km) and UH 
percentiles (0.82–0.86), FSS maximizes at higher σ 
(150–180 km) and UH percentiles (0.92–0.94), and 
BSrely is best at the highest σ (240–300 km) and UH 
percentiles (0.95–0.96). For reference, in each panel 
in Fig. 4, the UH percentile at which the number 
of surrogate severe storm reports is approximately 
equal to the number of observed severe reports 
over all cases is shown by the turquoise dashed line 
(p = 0.974; i.e., bias = 1.0). Thus, AUCs maximize 
at UH percentiles associated with biases well above 
1.0. In fact, the biases at these lower ranges of UH 
percentiles range from 6.0 to 7.8 (not shown). The 
high biases associated with the maximum AUCs 

are not surprising because AUC does not account 
for bias or reliability. Furthermore, for rare-event 
forecasts, increasing the number of forecast events 
almost always acts to increase the POD more than 
the POFD, thereby increasing the AUC, because 
correct negatives so heavily weight the POFD. For 
FSS and BSrely, the scores maximize at UH percentiles 
closer to bias = 1.0 than AUC. For BSrely, it may seem 
intuitive that the best reliability would occur when 
bias = 1.0; however, underdispersion causes prob-
abilities to be too high, and the additional spatial 
uncertainty provided by a bias slightly higher than 
1.0 along with very strong smoothing apparently 
achieves the best reliability.

For AUC and FSS, the MIXED10-mem and MIXED20-mem 
have slightly higher maximum scores than ARW and 
NMMB, which are very similar to each other. The 
best BSrely values are nearly identical among the four 
ensembles. To evaluate whether any of the differences 
in maximum scores were significant, the resampling 
approach of Hamill (1999) was utilized and it was 
found that none of the differences between ensembles 
were significant at α = 0.05. Thus, although the mul-
ticore approach has slightly higher scores than the 
single-model approach for severe weather forecasting, 
a larger sample is necessary to determine whether 
these differences can be attributed to more than just 
randomness. Continuation of CLUE-related experi-
ments in subsequent years will contribute to larger 
data samples and lead to more robust statistical results.

Single versus multicore experiment: QPF verif ication. 
Similar to severe weather, accurate precipitation fore-
casting is notoriously difficult for numerical weather 
prediction (NWP) models (e.g., Carbone et al. 2002; 
Roebber et al. 2004), but CAM-based systems have 
led to major improvements in QPFs over convection-
parameterizing models (e.g., Clark et al. 2009, 2010a, 
2012; Weisman et al. 2008; Iyer et al. 2016). In many 
ways, QPF verification is simpler than severe weather, 
because more reliable and higher-resolution observa-
tional precipitation datasets exist (e.g., NCEP’s Stage 
IV dataset), and QPFs are directly output from models 
and thus do not require surrogates like severe weather. 
Although these differences allow QPF verification to 
be reliably performed at higher spatial and temporal 
resolution than severe weather, to compare QPF and 
severe weather performance, verification is per-
formed at the same scale as severe weather. Follow-up 
work will perform QPF verification at higher spatial 
and temporal resolution.

To perform QPF verification analogously to se-
vere weather, 24-h accumulated precipitation from 
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NCEP’s 4-km grid-spacing Stage IV dataset (Lin and 
Mitchell 2005; Nelson et al. 2016) was remapped onto 
the NCEP 211 grid using the maximum 24-h pre-
cipitation amount from all 4-km Stage IV grid points 
within each 81-km NCEP 211 grid box. Then, the pre-
cipitation amount that resulted in the same number 
of observed severe weather events was found, which 
was 2.69 in. (1 in. = 2.54 cm). In other words, the 
total number of 81-km grid boxes with an observed 
severe weather report was equal to the total number 

of 81-km grid boxes in which the maximum observed 
precipitation was 2.69 in. or greater. Then, maximum 
24-h accumulated QPFs from each ensemble member 
were remapped onto the 81-km grid in the same man-
ner as UH, and heavy rainfall probabilities were also 
computed similarly to UH.

Figure 5 shows that all the precipitation skill met-
rics computed using the 2.69-in. threshold were no-
ticeably higher than those for UH; thus, these CAM 
ensembles provide more skillful forecasts of extreme 

Fig. 4. AUC as a function of σ and UH percentile for the ensembles (a) ARW, (b) NMMB, (c) MIXED10-mem, and 
(d) MIXED20-mem. (e)–(h) As in (a)–(d), respectively, but for FSS. (i)–(l) As in (a)–(d), respectively, but for BSrely. 
In each panel, a blue × marks the best score, which is indicated in the text; the vertical dashed turquoise line 
marks the UH percentile at which bias = 1 (i.e., the number of surrogate severe reports approximately matches 
the number of observed reports). In (i)–(l), the reliability diagrams are shown corresponding to σ and UH 
percentile at which BSrely is minimized.
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rainfall than severe weather. Also, the multicore 
systems (MIXED10-mem and MIXED20-mem) had better 
AUC, FSS, and BSrely results than the single-core sys-
tems, but as with UH, none of the differences between 
the single- and multicore subsets were statistically 
significant. There are also noticeable differences in 
σ and the rainfall percentiles at which the metrics are 
maximized. Namely, relative to UH, there is a shift 
toward higher percentiles (biases closer to 1.0) and 
smaller σ (i.e., less smoothing) for QPF. The reason 
for this shift is not clear, but it is speculated that it is 
because of differences in the spatial characteristics of 
heavy rainfall and severe weather. However, further 
work is needed for substantiation.

CONCLUDING REMARKS. The 2016 SFE 
marks year 17 of annual SFEs organized by the SPC 
and NSSL, which aim to accelerate the advancement 
of new technologies and concepts from research 
to operations for improving hazardous convective 
weather prediction. Since 2004, a main focus of SFEs 
has been on evaluating performance characteristics 
of CAMs, as well as making advances in creating, 
importing, processing, verifying, and extracting 
unique hazardous weather fields, as well as providing 
analysis and visualization tools for CAMs. With in-
creasing numbers of CAMs contributed to SFEs every 
year, and the strong community call for evidence-
driven decision-making as EMC and the modeling 

Fig. 5. As in Fig. 4, but for 24-h precipitation forecasts.
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community configure the first generation of opera-
tional CAM-based ensemble prediction systems, a 
major initiative was started during the 2016 SFE to 
coordinate and standardize the CAM contributions 
from each of our external collaborators, so that each 
group of CAMs could be considered part of one large 
ensemble termed the Community Leveraged Unified 
Ensemble (CLUE).

The CLUE was designed to enable up to eight dif-
ferent controlled experiments focused on optimizing 
CAM ensemble configurations. Results from one of 
these experiments—single versus multicore ensemble 
design—were reported upon herein, while research is 
in progress for several other CLUE experiments. For 
the single versus multicore results, objective metrics 
for severe weather forecast skill indicated small differ-
ences in forecast skill, with multicore systems having 
slightly higher scores than those for a single core. 
Additionally, a 20-member mixed-core ensemble per-
formed almost identically to a 10-member mixed-core 
ensemble. None of the differences were statistically 
significant, but with only 24 cases, significance would 
likely require a larger sample size.

For precipitation verification, probabilistic QPFs 
were found to be more skillful than those for se-
vere weather when the verification was performed 
similarly. Additionally, the mixed-core ensembles 
had slightly better objective metrics for QPF than 
the single-core ensembles. Future work is planned to 
perform the precipitation verification from the mul-
ticore versus single-core ensemble design experiment 
at higher spatial and temporal resolution.

HWT has a long and productive history of bring-
ing together different parts of the research, operation-
al, and academic meteorological communities to work 
collaboratively in a real-time simulated forecasting 
environment, focusing on severe weather forecasting 
problems. We envision continuing the CLUE system 
in subsequent experiments, and there is ample rea-
son to believe that it can further enhance effective 
engagement between the modeling and operational 
communities, as well as provide important scientific 
evidence necessary for informed decision-making, 
so that future U.S. hazardous weather prediction 
capabilities are the best possible.
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